Skip to content
Register Sign in Wishlist
The Collected Mathematical Papers of James Joseph Sylvester

The Collected Mathematical Papers of James Joseph Sylvester

Volume 4. 1882–1897

$93.00 (R)

  • Date Published: February 2012
  • availability: Available
  • format: Paperback
  • isbn: 9781107644182

$ 93.00 (R)
Paperback

Add to cart Add to wishlist

Looking for an examination copy?

If you are interested in the title for your course we can consider offering an examination copy. To register your interest please contact collegesales@cambridge.org providing details of the course you are teaching.

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • James Joseph Sylvester (1814–97) was an English mathematician who made key contributions to numerous areas of his field and was also of primary importance in the development of American mathematics, both as inaugural Professor of Mathematics at Johns Hopkins University and founder of the American Journal of Mathematics. Originally published in 1912, this book forms the fourth in four volumes of Sylvester's mathematical papers, covering the period from 1882 to 1897. Together these volumes provide a comprehensive resource that will be of value to anyone with an interest in Sylvester's theories and the history of mathematics.

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: February 2012
    • format: Paperback
    • isbn: 9781107644182
    • length: 798 pages
    • dimensions: 244 x 170 x 40 mm
    • weight: 1.25kg
    • availability: Available
  • Table of Contents

    Biographical notice
    1. A constructive theory of partitions, arranged in three acts, an interact and an exodion
    2. Sur les nombres de fractions ordinaires inégales qu'on peut exprimer en se servant de chiffres qui n'excèdent pas un nombre donné
    3. Note sur le théorème de Legendre cité dans une note insérée dans les Comptes Rendus
    4. Sur le produit indéfini 1 - x. 1 - x2. 1 - x3
    5. Sur une théorème de partitions
    6. Preuve graphique du théorème d'Euler sur la partition des nombres pentagonaux
    7. Démonstration graphique d'un théorème d'Euler concernant les partitions des nombres
    8. Sur un théorème de partitions de nombres complexes contenu dans un théorème de Jacobi
    9. On the number of fractions contained in any 'Farey series' of which the limiting number is given
    10. On the equation to the secular inequalities in the planetary theory
    11. On the involution and evolution of quaternions
    12. On the involution of two matrices of the second order
    13. Sur les quantités formant un groupe de nonions analoques aux quaternions de Hamilton
    14. On quaternions, nonions, sedenions, etc.
    15. On involutants and other allied species of invariants to matrix systems
    16. On the three laws of motion in the world of universal algebra
    17. Equations in matrices
    18. Sur les quantités formant un groupe de nonions analoques aux quaternions de Hamilton
    19. Sur une note récente de M. D. André
    20. Sur la solution d'une classe très étendue d'équations en quaternions
    21. Sur la correspondence entre deux espèces differentes de fonctions de deux systèmes de quantités, corrélatifs et également nombreux
    22. Sur le théorème de M. Brioschi, relatif aux fonctions symétriques
    23. Sur une extension de la loi de Harriot relative aux équations algébriques
    24. Sur les équations monothétiques
    25. Sur l'équation en matrices px = xq
    26. Sur la solution du cas le plus général des équations linéaires en quantitiés binaires, c'est-à-dire en quaternions ou en matrices du second ordre
    27. Sur les deux méthodes, celle de Hamilton en quaternions ou en matrices du second ordre
    29. Sur la résolution générale de l'équation linéaire en matrices d'un ordre quelconque
    30. Sur l'équation linéaire trinôme en matrices d'un ordre quelconque
    31. Lectures on the principles of universal algebra
    32. On the solution of a class of equations in quaternions
    33. On Hamilton's quadratic equation and the general unilateral equation in matrices
    34. Note on Captain MacMahon's transformation of the theory of invariants
    35. On the D'Alembert–Carnot geometrical paradox and its resolution
    36. Sur une nouvelle théorie de formes algébriques
    37. Note on Schwarzian derivatives
    38. On reciprocants
    39. Note on certain elementary geometrical notions and determinations
    40. On the trinomial unilateral quadratic equation in matrices of the second order
    41. Inaugural lecture at Oxford, on the method of reciprocants
    42. Lectures on the theory of reciprocants
    43. Sur les réciprocants purs irréductibles du quatriè me ordre
    44. Sur une extension du théorème relatif au nombre d'invariants asyzygétiques d'un type donné à une classe de formes analogues
    45. Note sur les invariants différentiels
    46. Sur l'équation différéntielle d'une courbe d'ordre quelconque
    47. Sur une extension d'un théorème de Clebsch relatif aux courbes du quatrième degré
    48. On the differential equation to a curve of any order
    49. On the so-called Tschirnhausen transformation
    50. Sur une découverte de M. James Hammond relative à une certaine série de nombres qui figurent dans la théorie de la transformation Tschirnhausen
    51. On Hamilton's numbers
    52. Sur les nombres dits de Hamilton
    53. Note on a proposed addition to the vocabulary of ordinary arithmetic
    54. On certain inequalities relating to prime numbers
    55. Sur les nombres parfaits
    56. Sur une classe spéciale des diviseurs de la somme d'un

  • Resources for

    The Collected Mathematical Papers of James Joseph Sylvester

    General Resources

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    *This title has one or more locked files and access is given only to instructors adopting the textbook for their class. We need to enforce this strictly so that solutions are not made available to students. To gain access to locked resources you either need first to sign in or register for an account.


    These resources are provided free of charge by Cambridge University Press with permission of the author of the corresponding work, but are subject to copyright. You are permitted to view, print and download these resources for your own personal use only, provided any copyright lines on the resources are not removed or altered in any way. Any other use, including but not limited to distribution of the resources in modified form, or via electronic or other media, is strictly prohibited unless you have permission from the author of the corresponding work and provided you give appropriate acknowledgement of the source.

    If you are having problems accessing these resources please email lecturers@cambridge.org

  • Author

    James Joseph Sylvester

    Editor

    H. F. Baker

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×