Skip to content
Register Sign in Wishlist

Mathematical Foundations of Imaging, Tomography and Wavefield Inversion

$72.99 (P)

  • Date Published: July 2012
  • availability: In stock
  • format: Hardback
  • isbn: 9780521119740

$ 72.99 (P)
Hardback

Add to cart Add to wishlist

Other available formats:
eBook


Looking for an examination copy?

If you are interested in the title for your course we can consider offering an examination copy. To register your interest please contact collegesales@cambridge.org providing details of the course you are teaching.

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • Inverse problems are of interest and importance across many branches of physics, mathematics, engineering and medical imaging. In this text, the foundations of imaging and wavefield inversion are presented in a clear and systematic way. The necessary theory is gradually developed throughout the book, progressing from simple wave equation based models to vector wave models. By combining theory with numerous MATLAB based examples, the author promotes a complete understanding of the material and establishes a basis for real world applications. Key topics of discussion include the derivation of solutions to the inhomogeneous and homogeneous Helmholtz equations using Green function techniques; the propagation and scattering of waves in homogeneous and inhomogeneous backgrounds; and the concept of field time reversal. Bridging the gap between mathematics and physics, this multidisciplinary book will appeal to graduate students and researchers alike. Additional resources including MATLAB codes and solutions are available online at www.cambridge.org/9780521119740.

    • Bridges the gap between physics and maths to provide a systematic treatment of inverse problems related to the wave equation
    • Includes numerous MATLAB based examples and end-of-chapter problems
    • Additional resources available online include a complete set of solutions, PowerPoint slides for instructors and MATLAB codes
    Read more

    Reviews & endorsements

    "I believe Tony Devaney has produced a masterpiece - a text that will be a standard and a "classic". He has struck a perfect balance between the mathematical structures and the physical reality of the wave setting. Devaney’s writing is very clear and the reader can hear that his knowledge is not just mathematical or formal, but based on actual experience with systems and signals. This work will stand the test of time in my view and serves the nation."
    Richard Albanese, Director of the Mathematics Products Division, Brooks Air Force, San Antonio

    "Professor Devaney's new book is a welcome contribution to the field of imaging and inverse scattering. Written by one of the leading practitioners in the field, it is unique in that it presents the basic underlying theory of linearized inverse scattering in a clear and comprehensive manner while only requiring a prerequisite of analytic function theory and linear algebra. In particular, this book is not only an excellent introductory textbook for graduate students in mathematics, physics or engineering but can also serve as a valuable reference source for experts in the field. I highly recommend Professor Devaney's new book to beginners and experts alike!"
    David Colton Unidel Professor, University of Delaware

    "Finally we have a book that collects together and explains the mathematical foundations of imaging based on wave propagation! This book will be indispensable for students and researchers who encounter inverse scattering problems and inverse source problems in medical imaging, nondestructive evaluation, seismic prospecting, and radar and microwave imaging. We owe Prof. Devaney a great debt for writing this immensely useful book."
    Margaret Cheney, Professor, Rensselaer Polytechnic Institute

    "An outstanding text on the foundations of the theory of imaging and wavefield inversion by a leading expert in these fields."
    Emil Wolf, Wilson Professor of Optical Physics, University of Rochester

    "I have found this monograph by Professor Tony Devaney on the foundations of imaging and linearized inverse scattering, to be one of the best scientific books I have read in years. It provides a clear understanding of the physics of the problem through a careful yet elegant and fluent mathematical treatment. Then, having gained the necessary physical insight of the physics, the Fourier based representation is replaced by the much more powerful singular value decomposition that provides a uniform framework for treating virtually all of the linearized inverse problems. By combining theory with MATLAB-based examples, the author promotes a complete understanding of the material and provides a basis for real-world applications. The book is highly recommended as a textbook for graduate courses and as a reference for researchers working in the general areas of computational inverse scattering."
    Ehud Heyman, Professor, Tel Aviv University

    "This book contains a wealth of valuable material on forward and inverse problems encountered in propagation, radiation, and scattering of waves presented in a concise, rigorous, and comprehensive manner. The primary emphasis is on the mathematical foundation of the subject, but the material is also of great interest in a variety of different applications. The book is a must for students and researchers in the field, and will serve well as a graduate text."
    Jakob Stamnes, Professor, University of Bergen

    "This is an exemplary textbook and reference about the theory of imaging based on the mathematical analysis of wave propagation. The author and publisher have produced a novel work that gives a complete foundation for the understanding and solution of inverse problems with applications to many types of imaging. This book is eminently suitable for a comprehensive graduate course."
    Barry R. Masters, Optics & Photonics News

    See more reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: July 2012
    • format: Hardback
    • isbn: 9780521119740
    • length: 536 pages
    • dimensions: 253 x 194 x 26 mm
    • weight: 1.32kg
    • contains: 75 b/w illus. 75 exercises
    • availability: In stock
  • Table of Contents

    1. Radiation and initial value problems for the wave equation
    2. Radiation and boundary value problems in the frequency domain
    3. Eigenfunction expansions of solutions to the Helmholtz equation
    4. Angular spectrum and multipole expansions
    5. The inverse source problem
    6. Scattering theory
    7. Surface scattering and diffraction
    8. Classical inverse scattering and diffraction tomography
    9. Waves in inhomogeneous media
    10. Time reversal imaging for systems of discrete scatterers
    11. The electromagnetic field
    Appendices
    Index.

  • Resources for

    Mathematical Foundations of Imaging, Tomography and Wavefield Inversion

    Anthony J. Devaney

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to instructors whose faculty status has been verified. To gain access to locked resources, instructors should sign in to or register for a Cambridge user account.

    Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other instructors may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.

    Supplementary resources are subject to copyright. Instructors are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.

    If you are having problems accessing these resources please contact lecturers@cambridge.org.

  • Author

    Anthony J. Devaney, Northeastern University, Boston
    Anthony J. Devaney is Distinguished Professor of Engineering at Northeastern University, Boston and has worked in the general area of inverse problems for more than 40 years. He has experience in geophysics inverse problems and inverse problems related to radar, optical and acoustic imaging.

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×