Skip to content
Register Sign in Wishlist

Algebraic Geometry and Statistical Learning Theory

£64.99

Part of Cambridge Monographs on Applied and Computational Mathematics

  • Date Published: August 2009
  • availability: Available
  • format: Hardback
  • isbn: 9780521864671

£ 64.99
Hardback

Add to cart Add to wishlist

Other available formats:
eBook


Looking for an inspection copy?

This title is not currently available on inspection

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity theory provide the necessary tools for studying such non-smooth models. Four main formulas are established: 1. the log likelihood function can be given a common standard form using resolution of singularities, even applied to more complex models; 2. the asymptotic behaviour of the marginal likelihood or 'the evidence' is derived based on zeta function theory; 3. new methods are derived to estimate the generalization errors in Bayes and Gibbs estimations from training errors; 4. the generalization errors of maximum likelihood and a posteriori methods are clarified by empirical process theory on algebraic varieties.

    • ● Presents a new statistical theory for singular learning machines ● Mathematical concepts explained for non-specialists ● Intended for any student interested in machine learning, pattern recognition, artificial intelligence or bioinformatics
    Read more

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: August 2009
    • format: Hardback
    • isbn: 9780521864671
    • length: 300 pages
    • dimensions: 233 x 155 x 20 mm
    • weight: 0.56kg
    • contains: 13 b/w illus.
    • availability: Available
  • Table of Contents

    Preface
    1. Introduction
    2. Singularity theory
    3. Algebraic geometry
    4. Zeta functions and singular integral
    5. Empirical processes
    6. Singular learning theory
    7. Singular learning machines
    8. Singular information science
    Bibliography
    Index.

  • Resources for

    Algebraic Geometry and Statistical Learning Theory

    Sumio Watanabe

    General Resources

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to lecturers whose faculty status has been verified. To gain access to locked resources, lecturers should sign in to or register for a Cambridge user account.

    Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other lecturers may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.

    Supplementary resources are subject to copyright. Lecturers are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.

    If you are having problems accessing these resources please contact lecturers@cambridge.org.

  • Author

    Sumio Watanabe, Tokyo Institute of Technology
    Sumio Watanabe is a Professor in the Precision and Intelligence Laboratory at the Tokyo Institute of Technology.

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×