Skip to content
Register Sign in Wishlist

Data Analysis Techniques for Physical Scientists

$75.00 USD

  • Date Published: September 2017
  • availability: This ISBN is for an eBook version which is distributed on our behalf by a third party.
  • format: Adobe eBook Reader
  • isbn: 9781108271523

$ 75.00 USD
Adobe eBook Reader

You will be taken to ebooks.com for this purchase
Buy eBook Add to wishlist

Other available formats:
Hardback


Looking for an inspection copy?

This title is not currently available on inspection

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • A comprehensive guide to data analysis techniques for physical scientists, providing a valuable resource for advanced undergraduate and graduate students, as well as seasoned researchers. The book begins with an extensive discussion of the foundational concepts and methods of probability and statistics under both the frequentist and Bayesian interpretations of probability. It next presents basic concepts and techniques used for measurements of particle production cross-sections, correlation functions, and particle identification. Much attention is devoted to notions of statistical and systematic errors, beginning with intuitive discussions and progressively introducing the more formal concepts of confidence intervals, credible range, and hypothesis testing. The book also includes an in-depth discussion of the methods used to unfold or correct data for instrumental effects associated with measurement and process noise as well as particle and event losses, before ending with a presentation of elementary Monte Carlo techniques.

    • Includes problems at the end of each chapter providing students and instructions with a way to test their knowledge
    • Presents step-by-step derivations of most of the mathematical concepts and tools used in the presentation of statistical methods and data analysis techniques which allows students to easily follow mathematical derivations and focus on the interpretation of the concepts
    • Provides a detailed discussion of techniques involved in measurements of correlation functions providing practitioners in the field of high-energy physics with the ability to measure high-precision correlation functions
    Read more

    Reviews & endorsements

    'This ambitious book provides a comprehensive, rigorous, and accessible introduction to data analysis for nuclear and particle physicists working on collider experiments, and outlines the concepts and techniques needed to carry out forefront research with modern collider data in a clear and pedagogical way. The topic of particle correlation functions, a seemingly straightforward topic with conceptual pitfalls awaiting the unaware, receives two full chapters. Professor Pruneau presents these concepts carefully and systematically, with precise definitions and extensive discussion of interpretation. These chapters should be required reading for all practitioners working in this area.' Peter Jacobs, Lawrence Berkeley National Laboratory

    'The techniques described in this textbook on correlation functions, and on efficiency and acceptance of an experimental apparatus, are key to understanding the approach used in many contemporary large-scale experiments; they are relevant for theoretical and experimental researchers alike, both in nuclear and particle physics and in many other areas where large data volumes and multi-dimensional data are investigated. I consider this an important and unique addition to the current literature on the subject.' Peter Braun-Munzinger, GSI Helmholtzzentrum fur Schwerionenforschung, Germany

    'This text is a very welcome addition to the books available in the area. It provides concise and eminently readable information on probability and statistics but also deals in quite some detail with many of the techniques used currently in running high-energy and nuclear physics experiments but not covered in standard texts. A case in point is the beautiful exposé on Kalman filtering, and the sections which deal with particle identification techniques. Presented so that theoretical researchers can get much-needed information on how data analysis works in such environments, the text is also very well suited to all students of experimental physics, and is particularly interesting for students and more senior researchers alike who have specialized in large nuclear and particle physics experiments.' Johanna Stachel, University of Heidelberg

    'Data Analysis Techniques for Physical Scientists is both monumental and accessible. While targeted towards data analysis methods in nuclear and particle physics, its breadth and depth insure that it will be of interest to a much broader audience across the physical sciences. Designed as a textbook, with ample problems and expository text, this wonderful new addition to the literature is also suitable for self-study and as a reference. As such, it is the book that I will first recommend to my students, be they undergraduates or graduate students.' W. A. Zajc, Columbia University, New York

    'The text is clearly written, and the book is well laid out with numerous useful illustrations. For its target audience, this is an excellent book.' A. H. Harker, Contemporary Physics

    'Data Analysis Techniques for Physical Scientists offers an accessible but rigorous and comprehensive presentation of data analysis techniques in modern large-scale experiments. Furthermore, much of the book is applicable beyond the physical sciences; it is a useful resource on probability and statistics that would benefit anyone who works with large data sets. Taken as a whole, it is an exceptional general reference for graduate students and seasoned experimental researchers alike.' Emilie Martin-Hein, Physics Today

    See more reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: September 2017
    • format: Adobe eBook Reader
    • isbn: 9781108271523
    • contains: 195 b/w illus. 20 tables
    • availability: This ISBN is for an eBook version which is distributed on our behalf by a third party.
  • Table of Contents

    Preface
    How to read this book
    1. The scientific method
    Part I. Foundation in Probability and Statistics:
    2. Probability
    3. Probability models
    4. Classical inference I: estimators
    5. Classical inference II: optimization
    6. Classical inference III: confidence intervals and statistical tests
    7. Bayesian inference
    Part II. Measurement Techniques:
    8. Basic measurements
    9. Event reconstruction
    10. Correlation functions
    11. The multiple facets of correlation functions
    12. Data correction methods
    Part III. Simulation Techniques:
    13. Monte Carlo methods
    14. Collision and detector modeling
    List of references
    Index.

  • Resources for

    Data Analysis Techniques for Physical Scientists

    Claude A. Pruneau

    General Resources

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to lecturers whose faculty status has been verified. To gain access to locked resources, lecturers should sign in to or register for a Cambridge user account.

    Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other lecturers may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.

    Supplementary resources are subject to copyright. Lecturers are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.

    If you are having problems accessing these resources please contact lecturers@cambridge.org.

  • Author

    Claude A. Pruneau, Wayne State University, Michigan
    Claude A. Pruneau is a Professor of Physics at the Wayne State University, Michigan, from where he received the 2006 Excellence in Teaching Presidential Award. He is also a member of the ALICE collaboration, and conducts an active research program in the study of the Quark Gluon Plasma produced in relativistic heavy ion collisions at the CERN Large Hadron Collider. He has worked as a Research Fellow at both Atomic Energy for Canada Limited and McGill University, Canada, and is a member of the American Physical Society, Canadian Association of Physicists and the Union of Concerned Scientists.

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×