Skip to content
Register Sign in Wishlist

Introduction to Microwave Imaging

$80.00 USD

Part of EuMA High Frequency Technologies Series

  • Date Published: July 2017
  • availability: This ISBN is for an eBook version which is distributed on our behalf by a third party.
  • format: Adobe eBook Reader
  • isbn: 9781108378178

$ 80.00 USD
Adobe eBook Reader

You will be taken to for this purchase
Buy eBook Add to wishlist

Other available formats:

Looking for an inspection copy?

This title is not currently available on inspection

Product filter button
About the Authors
  • With this self-contained, introductory text, readers will easily understand the fundamentals of microwave and radar image generation. Written with the complete novice in mind, and including an easy-to-follow introduction to electromagnetic scattering theory, it covers key topics such as forward models of scattering for interpreting S-parameter and time-dependent voltage data, S-parameters and their analytical sensitivity formulae, basic methods for real-time image reconstruction using frequency-sweep and pulsed-radar signals, and metrics for evaluating system performance. Numerous application examples and practical tutorial exercises provided throughout allow quick understanding of key concepts, and sample MATLAB codes implementing key reconstruction algorithms accompany the book online. This one-stop resource is ideal for graduate students taking introductory courses in microwave imaging, as well as researchers and industry professionals wanting to learn the fundamentals of the field.

    • The first introductory text on microwave imaging
    • Includes numerous application examples and practical tutorial exercises, aiding understanding of fundamental concepts
    • Accompanied online by sample MATLAB codes and color figures
    Read more

    Reviews & endorsements

    'Natalia Nikolova has created an outstanding, self-contained resource for students, researchers and practitioners in the field of microwave imaging. The clarity, depth, and breadth of this masterful treatise are hallmarks of her exceptional talents as a distinguished researcher and educator. She leads the reader through a compelling landscape of field theory, computational electromagnetics, and technology to the cutting edge of microwave imaging. This book is a 'must read' for students and experts alike.' Wolfgang J. R. Hoefer, University of Victoria

    'In this reference book, Natalia Nikolova has opportunely and comprehensively gathered together different microwave image reconstruction algorithms as resulting from various processing options of Maxwell's equations, in frequency or time domains. As such, it constitutes an extremely useful toolbox with practical operating guidance enabling all those, firstcomers, students or experienced researchers and engineers, faced with microwave imaging applications to select the best suited algorithm for their test cases, implement it on a computer and, finally, evaluate its performance according to different image quality criteria.' Jean-Charles Bolomey, Université de Paris XI

    See more reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity


    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?


    Product details

    • Date Published: July 2017
    • format: Adobe eBook Reader
    • isbn: 9781108378178
    • availability: This ISBN is for an eBook version which is distributed on our behalf by a third party.
  • Table of Contents

    1. Scalar wave models in electromagnetic scattering
    2. Electromagnetic scattering: the vector model
    3. Scattering parameters in microwave imaging
    4. Linear inversion in real space
    5. Linear inversion in Fourier space
    6. Performance metrics in imaging
    7. Looking forward: nonlinear reconstruction
    Appendix A. Maxwell's equations
    Appendix B. The electromagnetic vector wave and Helmholtz equations
    Appendix C. Scalarized electromagnetic models
    Appendix D. Causal, acausal and adjoint solutions to the wave equation

  • Resources for

    Introduction to Microwave Imaging

    Natalia K. Nikolova

    General Resources

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to lecturers whose faculty status has been verified. To gain access to locked resources, lecturers should sign in to or register for a Cambridge user account.

    Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other lecturers may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.

    Supplementary resources are subject to copyright. Lecturers are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.

    If you are having problems accessing these resources please contact

  • Author

    Natalia K. Nikolova, McMaster University, Ontario
    Natalia K. Nikolova is a Professor in the Department of Electrical and Computer Engineering at McMaster University, and a Canada Research Chair in High-frequency Electromagnetics. She is a Fellow of both the Institute of Electrical and Electronics Engineers (IEEE) and the Canadian Academy of Engineering, and a former IEEE Distinguished Microwave Lecturer.

Sign In

Please sign in to access your account


Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner Please see the permission section of the catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.


Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

Please fill in the required fields in your feedback submission.