Skip to content
Register Sign in Wishlist
Look Inside Intersection and Decomposition Algorithms for Planar Arrangements

Intersection and Decomposition Algorithms for Planar Arrangements

£27.99

  • Date Published: August 2011
  • availability: Available
  • format: Paperback
  • isbn: 9780521168472

£ 27.99
Paperback

Add to cart Add to wishlist

Other available formats:
Hardback


Looking for an inspection copy?

This title is not currently available on inspection

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • Several geometric problems can be formulated in terms of the arrangement of a collection of curves in a plane, which has made this one of the most widely studied topics in computational geometry. This book, first published in 1991, presents a study of various problems related to arrangements of lines, segments, or curves in the plane. The first problem is a proof of almost tight bounds on the length of (n,s)-Davenport–Schinzel sequences, a technique for obtaining optimal bounds for numerous algorithmic problems. Then the intersection problem is treated. The final problem is improving the efficiency of partitioning algorithms, particularly those used to construct spanning trees with low stabbing numbers, a very versatile tool in solving geometric problems. A number of applications are also discussed. Researchers in computational and combinatorial geometry should find much to interest them in this book.

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: August 2011
    • format: Paperback
    • isbn: 9780521168472
    • length: 296 pages
    • dimensions: 229 x 152 x 17 mm
    • weight: 0.44kg
    • availability: Available
  • Table of Contents

    Introduction
    1. Davenport–Schinzel sequences
    2. Red-blue intersection detection algorithms
    3. Partitioning arrangements of lines
    4. Applications of the partitioning algorithm
    5. Spanning trees with low stabbing number
    Bibliography
    Index of symbols
    Index of keywords.

  • Author

    Pankaj K. Agarwal, Duke University, North Carolina

related journals

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×