Skip to content
Register Sign in Wishlist

Novel Porous Media Formulation for Multiphase Flow Conservation Equations


  • Date Published: January 2014
  • availability: Available
  • format: Paperback
  • isbn: 9781107630178

£ 35.99

Add to cart Add to wishlist

Other available formats:
Hardback, eBook

Looking for an inspection copy?

This title is not currently available on inspection

Product filter button
About the Authors
  • William T. Sha first proposed the novel porous media formulation in an article in Nuclear Engineering and Design in 1980. The novel porous media formulation represented a new, flexible and unified approach to solve real-world engineering problems. It uses the concept of volume porosity, directional surface porosities, distributed resistance and distributed heat source and sink. Most practical engineering problems involve many complex shapes and sizes of solid internal structures whose distributed resistance is impossible to quantify accurately. The concept of directional surface porosities eliminates the sole reliance on empirical estimation of the distributed resistance of complex-shaped structures often involved in the analysis. The directional surface porosities thus greatly improve the resolution and modeling accuracy and facilitate mock-ups of numerical simulation models of real engineering systems. Both the continuum and conventional porous media formulations are subsets of the novel porous media formulation.

    • Written by renowned expert William T. Sha
    • Introduces the novel porous media formulation for multiphase flow conservation equations
    • Represents a new, flexible, and unified approach to solving real-world engineering problems
    Read more

    Reviews & endorsements

    'In the reviewer's opinion, this book provides a fundamental and comprehensive presentation of the mathematical and physical theory of multiphase flow, pointing out several important practical applications. [It] is excellently written and readable. Numerical solutions are given graphically and in tabular form. A large list of 66 papers and books is included at the end of the book. The book will be useful to a wide range of specialists working in the area of flows in porous media, such as design engineers, physicists, chemical engineers, and also to researchers interested in the applied mathematical theory of flows in porous media. It can be also recommended as a text for seminars and courses, as well as for independent study. Some chapters of the book present the state-of-the-art reviews, and they provide a solid background for future research.' Ioan Pop, Zentralblatt MATH

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity


    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?


    Product details

    • Date Published: January 2014
    • format: Paperback
    • isbn: 9781107630178
    • length: 260 pages
    • dimensions: 229 x 152 x 14 mm
    • weight: 0.35kg
    • contains: 47 b/w illus. 1 table
    • availability: Available
  • Table of Contents

    1. Introduction
    2. Averaging relations
    3. Phasic conservation equations and interfacial balance equations
    4. Local-volume-averaged conservation equations and interfacial balance equations
    5. Time averaging of local-volume-averaged conservation equations or time-volume-averaged conservation equations and interfacial balance equations
    6. Time averaging in relation to local volume averaging and time-volume averaging versus volume-time averaging
    7. COMMIX code capable of computing detailed micro-flow fields with fine computational mesh and high-order differencing scheme
    8. Discussion and concluding remarks.

  • Resources for

    Novel Porous Media Formulation for Multiphase Flow Conservation Equations

    William T. Sha

    General Resources

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    *This title has one or more locked files and access is given only to lecturers adopting the textbook for their class. We need to enforce this strictly so that solutions are not made available to students. To gain access to locked resources you either need first to sign in or register for an account.

    These resources are provided free of charge by Cambridge University Press with permission of the author of the corresponding work, but are subject to copyright. You are permitted to view, print and download these resources for your own personal use only, provided any copyright lines on the resources are not removed or altered in any way. Any other use, including but not limited to distribution of the resources in modified form, or via electronic or other media, is strictly prohibited unless you have permission from the author of the corresponding work and provided you give appropriate acknowledgement of the source.

    If you are having problems accessing these resources please email

  • Author

    William T. Sha, Argonne National Labs
    Dr William T. Sha is formerly a senior scientist at Argonne National Laboratory and the former Director of the Analytic Thermal Hydraulic Research Program and the Multiphase Flow Research Institute. He has published over 290 papers, primarily in the field of thermal hydraulics. He is the recipient of many awards, including the 2005 Technical Achievement Award from the Thermal Hydraulic Division (THD) of the American Nuclear Society (ANS), the 2006 Glenn T. Seaborg Medal, the 2007 Samuel Untermyer II Medal and the 2008 Reactor Technology Award, all from the ANS.

Sign In

Please sign in to access your account


Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner Please see the permission section of the catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.


Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

Please fill in the required fields in your feedback submission.