Skip to content
Register Sign in Wishlist

Quantum Transport
Atom to Transistor

textbook
  • Date Published: May 2013
  • availability: Available
  • format: Paperback
  • isbn: 9781107632134

Paperback

Add to wishlist

Other available formats:
Hardback, eBook


Request inspection copy

Lecturers may request a copy of this title for inspection

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • This book presents the conceptual framework underlying the atomistic theory of matter, emphasizing those aspects that relate to current flow. This includes some of the most advanced concepts of non-equilibrium quantum statistical mechanics. No prior acquaintance with quantum mechanics is assumed. Chapter 1 provides a description of quantum transport in elementary terms accessible to a beginner. The book then works its way from hydrogen to nanostructures, with extensive coverage of current flow. The final chapter summarizes the equations for quantum transport with illustrative examples showing how conductors evolve from the atomic to the ohmic regime as they get larger. Many numerical examples are used to provide concrete illustrations and the corresponding Matlab codes can be downloaded from the web. Videostreamed lectures, keyed to specific sections of the book, are also available through the web. This book is primarily aimed at senior and graduate students.

    • Assuming no prior background, discusses advanced concepts of non-equilibrium statistical mechanics which are key for the analysis and design of nanoscale devices
    • Contains many numerical examples, with corresponding MATLAB code available for the Web; problems are also included, solutions to which are available to instructors by e-mailing solutions@cambridge.org
    • Videostreamed lectures, keyed to the text, also available from the Web
    Read more

    Reviews & endorsements

    'Molecular transport phenomena in junctions is a very 'hot' area, that is best understood in terms of quantum transport phenomena in general. This book, by one of the true leaders in this field, presents and clarifies molecular transport in the context of the larger quantum transport area. The text is lucid, masterful, understandable and unified. The numerical examples and MATLAB codes combine with the discussions to provide a strongly integrated and very readable overview of the field.' Mark Ratner, Northwestern University, Illinois

    'A lucid treatment of what's destined to be the 'next big thing' for electrical engineers - conduction at the atomic scale - eminently suitable for students and professionals alike. The generous use of examples and clarifying remarks, together with the novel approach of sequentially building up transport theory from the 'bottom up' and a genuine flair for effortlessly bringing together salient aspects of physics and engineering makes this a very useful book, indeed.' Steve Laux, IBM, Yorktown Heights

    'In recent years, scientists have developed a powerful practical technique based on Green function methods for calculating transport through small open systems. Supriyo Datta is one of its leading exponents and his new textbook makes a valiant and fascinating effort to use the formalism to provide a simple exposition of quantum transport on the atomic scale … It is more accessible, more embracing and a much better read than his earlier monograph Electronic Transport in Mesoscopic Systems. It contains excellent examples, good breadth and progressive detail, and is of real value to electronic engineers, physicists, and chemists researching modern interdisciplinary nanoelectronics.' Chemistry World

    See more reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: May 2013
    • format: Paperback
    • isbn: 9781107632134
    • length: 417 pages
    • dimensions: 245 x 173 x 19 mm
    • weight: 0.83kg
    • availability: Available
  • Table of Contents

    Foreword
    1. Prologue - electrical resistance: an atomistic view
    2. Schrödinger equation
    3. Self-consistent field
    4. Basis functions
    5. Bandstructure
    6. Subbands
    7. Capacitance
    8. Level broadening
    9. Coherent transport
    10. Non-coherent transport
    11. Atom to transistor
    Epilogue
    Appendix/advanced formalism
    Selected bibliography
    MATLAB codes for text figures.

  • Resources for

    Quantum Transport

    Supriyo Datta

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to lecturers whose faculty status has been verified. To gain access to locked resources, lecturers should sign in to or register for a Cambridge user account.

    Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other lecturers may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.

    Supplementary resources are subject to copyright. Lecturers are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.

    If you are having problems accessing these resources please contact lecturers@cambridge.org.

  • Author

    Supriyo Datta, Purdue University, Indiana
    Supriyo Datta is the Thomas Duncan Distinguished Professor in the School of Electrical and Computer Engineering at Purdue University. He is also the Director of the NASA Institute for Nanoelectronics and Computing. He is a Fellow of the IEEE, the American Physical Society (APS) and the Institute of Physics (IOP) and has authored three other books.

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×