Skip to content
Register Sign in Wishlist

Organic and Amorphous-Metal-Oxide Flexible Analogue Electronics

Part of Elements in Flexible and Large-Area Electronics

  • Date Published: May 2018
  • availability: Available
  • format: Paperback
  • isbn: 9781108458191

Paperback

Add to wishlist

Other available formats:
eBook


Looking for an inspection copy?

Please email academicmarketing@cambridge.edu.au to enquire about an inspection copy of this book

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • Recent years have witnessed significant research efforts in flexible organic and amorphous-metal-oxide analogue electronics, in view of its formidable potential for applications such as smart sensor systems. This Element provides a comprehensive overview of this growing research area. After discussing the properties of organic and amorphous-metal-oxide technologies relevant to analogue circuits, this Element focuses on their application to two key circuit blocks: amplifiers and analogue-to-digital converters. The Element thus provides a fresh look at the evolution and immediate opportunities of the field, and identifies the remaining challenges for these technologies to become the platform of choice for flexible analogue electronics.

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: May 2018
    • format: Paperback
    • isbn: 9781108458191
    • dimensions: 230 x 153 x 8 mm
    • weight: 0.23kg
    • availability: Available
  • Table of Contents

    1. Introduction
    2. Organic and amorphous-metal-oxide thin-film transistors
    3. Flexible analogue amplifiers
    4. Circuit techniques and architectures for analogue-to-digital converters
    5. Conclusions
    6. References.

  • Resources for

    Organic and Amorphous-Metal-Oxide Flexible Analogue Electronics

    Vincenzo Pecunia, Marco Fattori, Sahel Abdinia, Henning Sirringhaus, Eugenio Cantatore

    General Resources

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to lecturers whose faculty status has been verified. To gain access to locked resources, lecturers should sign in to or register for a Cambridge user account.

    Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other lecturers may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.

    Supplementary resources are subject to copyright. Lecturers are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.

    If you are having problems accessing these resources please contact lecturers@cambridge.org.

  • Authors

    Vincenzo Pecunia, Soochow University, China

    Marco Fattori, Eindhoven University of Technology

    Sahel Abdinia, Eindhoven University of Technology

    Henning Sirringhaus, University of Cambridge

    Eugenio Cantatore, Eindhoven University of Technology

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×