Skip to content
Register Sign in Wishlist

Complex Analysis

textbook

Part of Cambridge Mathematical Textbooks

  • Date Published: April 2019
  • availability: In stock
  • format: Hardback
  • isbn: 9781107134829

Hardback

Add to wishlist

Other available formats:
eBook


Request inspection copy

Lecturers may request a copy of this title for inspection

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • This user-friendly textbook introduces complex analysis at the beginning graduate or advanced undergraduate level. Unlike other textbooks, it follows Weierstrass' approach, stressing the importance of power series expansions instead of starting with the Cauchy integral formula, an approach that illuminates many important concepts. This view allows readers to quickly obtain and understand many fundamental results of complex analysis, such as the maximum principle, Liouville's theorem, and Schwarz's lemma. The book covers all the essential material on complex analysis, and includes several elegant proofs that were recently discovered. It includes the zipper algorithm for computing conformal maps, as well as a constructive proof of the Riemann mapping theorem, and culminates in a complete proof of the uniformization theorem. Aimed at students with some undergraduate background in real analysis, though not Lebesgue integration, this classroom-tested textbook will teach the skills and intuition necessary to understand this important area of mathematics.

    • Includes over 200 exercises, set at varying levels of difficulty to engage and motivate the reader
    • Illustrates analytical functions with color figures to grant a high level of detail and accessibility
    • Provides complete and detailed proofs and ties the subject with several other areas to give readers a comprehensive understanding of complex analysis and its applications
    Read more

    Reviews & endorsements

    'Marshall's book covers the basic topics with crystal clarity in a style that is conversational and concrete, and that guides the student into thinking about these topics the way a working mathematician does, especially one with a geometric or computational bent. Moreover, the book includes many results that are vital to modern function theory and its applications to geometry, dynamics and probability, but that are often omitted from introductory texts. I wish I had first learned the subject from this book, and I am delighted that my students can do so.' Christopher Bishop, State University of New York at Stony Brook

    'This is an original and most welcomed new graduate text in complex analysis. Assuming only undergraduate real analysis and following the power series approach, it quickly and elegantly develops the basic theory through Cauchy's theorem for cycles, normal families, the Riemann mapping theorem, and the Weierstrass and Mittag-Leffler theorems. Unique aspects of the book include its many short, clever, and clear proofs of familiar results, the author's computational point of view about conformal mappings, a concise proof of the uniformization theorem from first principles (using the dipole Green's function for the parabolic case), and an excellent selection of exercises, some very thought provoking but having easy proofs.' John Garnett, University of California, Los Angeles

    'There are essentially three points of view from which to begin the study of complex analysis, due principally to Cauchy, Weierstrass, and Riemann. These approaches emphasize integral formulas, power series and conformal mapping, respectively. Marshall has chosen to initially adopt the approach of Weierstrass and to emphasize at the outset the notion of a power series. From that point of view, many of the central ideas and theorems of complex analysis arise early in a rather natural way and are quite suggestive of what is true in a much wider context. One of the features of this book that distinguishes it from other texts is its emphasis on conformal mapping, culminating in a beautiful exposition of the Uniformization theorem for simply connected Riemann surfaces. From the outset, the exposition is placed in an historical context, is clear and concise throughout, and includes many new and interesting exercises.' James Brennan, University of Kentucky

    'Written by a skillful teacher and grand master of complex analysis, this complex analysis graduate level textbook stands out from other texts through the clarity and elegance of the arguments, the efficiency of the presentation, and the selection of advanced topics. Each of the 16 chapters ends with a carefully selected set of exercises ranging from routine to challenging, making it an excellent textbook and ideal for a first-year graduate course. Marshall's choice of beginning with power series (following Weierstrass) has the advantage of a very fast and direct approach to some of the highlights of the theory. The connection to Cauchy's integral calculus, which is the starting point of most texts, is then made through partial fractions and Runge's theorem. This makes the book an invaluable addition to the complex analysis literature.' Steffen Rohde, University of Washington

    See more reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: April 2019
    • format: Hardback
    • isbn: 9781107134829
    • length: 286 pages
    • dimensions: 261 x 182 x 18 mm
    • weight: 0.77kg
    • contains: 68 colour illus.
    • availability: In stock
  • Table of Contents

    Preface
    Prerequisites
    Part I:
    1. Preliminaries
    2. Analytic functions
    3. The maximum principle
    4. Integration and approximation
    5. Cauchy's theorem
    6. Elementary maps
    Part II:
    7. Harmonic functions
    8. Conformal maps and harmonic functions
    9. Calculus of residues
    10. Normal families
    11. Series and products
    Part III:
    12. Conformal maps to Jordan regions
    13. The Dirichlet problem
    14. Riemann surfaces
    15. The uniformization theorem
    16. Meromorphic functions on a Riemann surface
    Appendix
    Bibliography
    Index.

  • Resources for

    Complex Analysis

    Donald E. Marshall

    General Resources

    Lecturer Resources

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    *This title has one or more locked files and access is given only to lecturers adopting the textbook for their class. We need to enforce this strictly so that solutions are not made available to students. To gain access to locked resources you either need first to sign in or register for an account.


    These resources are provided free of charge by Cambridge University Press with permission of the author of the corresponding work, but are subject to copyright. You are permitted to view, print and download these resources for your own personal use only, provided any copyright lines on the resources are not removed or altered in any way. Any other use, including but not limited to distribution of the resources in modified form, or via electronic or other media, is strictly prohibited unless you have permission from the author of the corresponding work and provided you give appropriate acknowledgement of the source.

    If you are having problems accessing these resources please email lecturers@cambridge.org

  • Author

    Donald E. Marshall, University of Washington
    Donald E. Marshall is Professor of Mathematics at the University of Washington. He received his Ph.D. from University of California, Los Angeles in 1976. Professor Marshall is a leading complex analyst with a very strong research record that has been continuously funded throughout his career. He has given invited lectures in over a dozen countries. He is coauthor of the research-level monograph Harmonic Measure (Cambridge, 2005).

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×